Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

  В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
  Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.

Вниз   Решение


Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр.

Вверх   Решение

Задачи

Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 6702]      



Задача 54072

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Периметр треугольника ]
Сложность: 3
Классы: 8,9

Из произвольной точки основания равнобедренного треугольника с боковой стороной, равной a, проведены прямые, параллельные боковым сторонам. Найдите периметр получившегося четырёхугольника.

Прислать комментарий     Решение

Задача 54073

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3
Классы: 8,9

Биссектриса угла параллелограмма делит сторону параллелограмма на отрезки, равные a и b. Найдите стороны параллелограмма.

Прислать комментарий     Решение

Задача 54089

Темы:   [ Ромбы. Признаки и свойства ]
[ Пересекающиеся окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

Прислать комментарий     Решение

Задача 54093

Темы:   [ Ромбы. Признаки и свойства ]
[ Построения ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки опишите около данной окружности ромб с данным углом.

Прислать комментарий     Решение

Задача 54095

Темы:   [ Признаки и свойства параллелограмма ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3
Классы: 8,9

Докажите, что отрезок, соединяющий середины противоположных сторон параллелограмма, проходит через его центр.

Прислать комментарий     Решение

Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .