ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Жуков Г.

На доске написано несколько натуральных чисел. Сумма любых двух из них – натуральная степень двойки.
Какое наибольшее число различных может быть среди чисел на доске?

Вниз   Решение


Торт упакован в коробку с квадратным основанием. Высота коробки вдвое меньше стороны этого квадрата. Ленточкой длины 156 см можно перевязать коробку и сделать бантик сверху (как на рисунке слева). А чтобы перевязать её с точно таким же бантиком сбоку (как на рисунке справа), нужна ленточка длины 178 см. Найдите размеры коробки.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

Вверх   Решение

Задачи

Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 7526]      



Задача 54498

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3-
Классы: 8,9

Высота, проведённая к основанию равнобедренного треугольника, равна h и вдвое больше своей проекции на боковую сторону. Найдите площадь треугольника.

Прислать комментарий     Решение


Задача 54511

Темы:   [ Элементарные (основные) построения циркулем и линейкой ]
[ Построение треугольников по различным элементам ]
Сложность: 3-
Классы: 8,9

С помощью циркуля и линейки постройте угол, равный данному углу.

Прислать комментарий     Решение


Задача 54529

Темы:   [ Построение треугольников по различным элементам ]
[ Прямоугольные треугольники ]
Сложность: 3-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.

Прислать комментарий     Решение


Задача 54546

Тема:   [ Биссектриса угла (ГМТ) ]
Сложность: 3-
Классы: 8,9

Найдите геометрическое место точек, равноудалённых от двух пересекающихся прямых.

Прислать комментарий     Решение

Задача 54669

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9

Окружность радиуса R, построенная на большем основании AD трапеции ABCD как на диаметре, касается меньшего основания BC в точке C, а боковой стороны AB — в точке A. Найдите диагонали трапеции.

Прислать комментарий     Решение


Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .