ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD. В клетках шахматной доски размером n×n расставлены числа: на пересечении k-й строки и m-го столбца стоит число akm. При любой расстановке на этой доске n ладей, при которой никакие две из них не бьют друг друга, сумма закрытых чисел равна 1972. Доказать, что существует два таких набора чисел x1, x2, ..., xn и y1, ..., yn, что при всех k и m выполняется равенство akm = xk + ym. Две окружности касаются внешним образом. Найдите длину их общей внешней касательной (между точками касания), если радиусы равны 16 и 25. На сторонах треугольника ABC вне его построены правильные треугольники
ABC1, BCA1 и CAB1. Доказать, что
В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника. На поверхности кубика мелом отмечено 100 различных точек. Докажите, что можно двумя различными способами поставить кубик на чёрный стол (причём в точности на одно и то же место) так, чтобы отпечатки от мела на столе при этих способах были разными. (Если точка отмечена на ребре или в вершине, она тоже даёт отпечаток.) Докажите, что: |
Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]
В выпуклом четырёхугольнике ACBD, площадь которого равна 25, проведены диагонали. Известно, что SABC = 2 SBCD, а SABD = 3 SACD. Найдите площади треугольников ABC, ACD, ADB и BCD.
В параллелограмме ABCD на диагонали AC взята точка E, причём AE : EC = 1 : 3, а на стороне AD взята такая точка F, что AF : FD = 1 : 2. Найдите площадь четырёхугольника ABGE, где G – точка пересечения прямой FE со стороной BC, если известно, что площадь параллелограмма ABCD равна 24.
Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что AP = PK, BQ : QL = 1 : 2, CR : RN = 5 : 4. Найдите площадь треугольника PQR.
Докажите, что:
Докажите, что сумма диагоналей выпуклого четырёхугольника меньше его периметра, но больше полупериметра.
Страница: << 170 171 172 173 174 175 176 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке