ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника ABC не превосходит $ {\frac{1}{2}}$AB . AC.

   Решение

Задачи

Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 7526]      



Задача 54944

Тема:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3-
Классы: 8,9

Точка M делит сторону AB треугольника ABC в отношении 2 : 5. В каком отношении отрезок CM делит площадь треугольника ABC?

Прислать комментарий     Решение


Задача 55124

Темы:   [ Средняя линия треугольника ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3-
Классы: 8,9

Три средних линии треугольника разбивают его на четыре части. Площадь одной из них равна S. Найдите площадь данного треугольника.

Прислать комментарий     Решение


Задача 55157

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3-
Классы: 8,9

Докажите, что площадь треугольника ABC не превосходит $ {\frac{1}{2}}$AB . AC.

Прислать комментарий     Решение


Задача 55254

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

В треугольнике боковая сторона равна 16 и образует с основанием угол в 60o; другая боковая сторона равна 14. Найдите основание.

Прислать комментарий     Решение


Задача 55258

Темы:   [ Неравенства для углов треугольника ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения):

1) 2, 3, 4;

2) 3, 4, 5;

3) 4, 5, 6;

4) 10, 15, 18;

5) 68, 119, 170.

Прислать комментарий     Решение


Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 7526]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .