ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°. Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD. Докажите, что у равнобедренного треугольника высота, опущенная на основание, является медианой и биссектрисой.
На хорде AB окружности K с центром в точке O взята точка C. D —
вторая точка пересечения окружности K с окружностью, описанной около
Выбрать 100 чисел, удовлетворяющих условиям x1 = 1, 0 ≤ x1 ≤ 2x1, 0 ≤ x3 ≤ 2x2, ..., 0 ≤ x99 ≤ 2x98, 0 ≤ x100 ≤ 2x99, так, чтобы выражение Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.
Докажите, что при повороте окружность переходит в окружность.
На шахматной доске 20×20 стоят 10 ладей и один король. Король не стоит под шахом и идёт из левого угла в правый верхний по диагонали. Ходят по очереди: сначала король, потом одна из ладей. Доказать, что при любом начальном расположении ладей и любом способе маневрирования ими король попадёт под шах. Сторона основания и высота правильной четырёхугольной пирамиды равны a . Найдите радиус вписанного шара. Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC. |
Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 6702]
Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC.
Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит
Докажите, что если a и b – две стороны треугольника, γ – угол
между ними и l – биссектриса этого угла, то
Катеты прямоугольного треугольника равны a и b. Найдите длину биссектрису, проведённой из вершины прямого угла.
В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении AN : BN = 2 : 1. Найдите тангенс угла DNC.
Страница: << 171 172 173 174 175 176 177 >> [Всего задач: 6702]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке