ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

Вниз   Решение


Четыре дома расположены по окружности. Где надо вырыть колодец, чтобы сумма расстояний от домов до колодца была наименьшей?

ВверхВниз   Решение


Автор: Фольклор

В стаде, состоящем из лошадей, двугорбых и одногорбых верблюдов, в общей сложности 200 горбов.
Сколько животных в стаде, если количество лошадей равно количеству двугорбых верблюдов? .

ВверхВниз   Решение


Представьте, что куб стоит на столе на одной своей вершине (так, что верхняя вершина расположена точно над нижней) и освещён прямо сверху. Какая в этом случае получается тень от куба?

ВверхВниз   Решение


Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14.

Вверх   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 6702]      



Задача 55162

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Неравенство треугольника ]
Сложность: 3-
Классы: 8,9

Пусть ABCD – выпуклый четырехугольник. Докажите, что  AB + CD < AC + BD.

Прислать комментарий     Решение

Задача 55169

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

В равнобедренном треугольнике ABC на продолжении основания BC за точку C взята точка D. Докажите, что угол ABC больше угла ADC.

Прислать комментарий     Решение

Задача 55184

Темы:   [ Неравенство треугольника ]
[ Диаметр, хорды и секущие ]
Сложность: 3-
Классы: 8,9

Докажите, что любая хорда окружности не больше диаметра и равна ему только тогда, когда сама является диаметром.

Прислать комментарий     Решение


Задача 55257

Темы:   [ Теорема косинусов ]
[ Против большей стороны лежит больший угол ]
Сложность: 3-
Классы: 8,9

Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.

Прислать комментарий     Решение


Задача 55262

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Точка D лежит на стороне AB треугольника ABC. Найдите CD, если известно, что BC = 37, AC = 15, AB = 44, AD = 14.
Прислать комментарий     Решение


Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 6702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .