Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Пусть E – точка пересечения боковых сторон AD и BC трапеции ABCD, Bn+1 – точка пересечения прямых AnC и BD  (A0 = A),  An+1 – точка пересечения прямых EBn+1 и  AB. Докажите, что  AnB = AB/n+1.

Вниз   Решение


Налим-лиман. Найти такие цифры, которые при подстановке их вместо букв в выражение НАЛИМ × 4 = ЛИМАН давали тождество (разным буквам соответствуют разные цифры, а одинаковым одинаковые)

ВверхВниз   Решение


Замените буквы в слове ТРАНСПОРТИРОВКА цифрами (разным буквам соответствуют разные цифры, а одинаковым одинаковые) так, чтобы выполнялось неравенство  Т > Р > А > Н < С < П < О < Р < Т > И > Р > О < В < К < А.

ВверхВниз   Решение


Познакомимся с тремя людьми: Алешиным, Беляевым и Белкиным. Один из них – архитектор, другой – бухгалтер, третий – археолог. Один живет в Белгороде, другой – в Брянске, третий в Астрахани. Требуется узнать, кто где живет и у кого какая профессия.
  1) Белкин бывает в Белгороде лишь наездами и то весьма редко, хотя все его родственники постоянно живут в этом городе.
  2) У двух из этих людей названия профессий и городов, в которых они живут, начинаются с той же буквы, что и их фамилии.
  3) Жена архитектора доводится Белкину младшей сестрой.

ВверхВниз   Решение


В забеге шести спортсменов Андрей отстал от Бориса и еще от двух спортсменов. Виктор финишировал после Дмитрия, но ранее Геннадия. Дмитрий опередил Бориса, но все же пришел после Евгения. Какое место занял каждый спортсмен?

ВверхВниз   Решение


Четырехугольник ABCD вписанный. Докажите, что точка Микеля для прямых, содержащих его стороны, лежит на отрезке, соединяющем точки пересечения продолжений сторон.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 56628

Тема:   [ Точка Микеля ]
Сложность: 4
Классы: 8,9

Четыре прямые образуют четыре треугольника.
а) Докажите, что описанные окружности этих треугольников имеют общую точку (точка Микеля).
б) Докажите, что центры описанных окружностей этих треугольников лежат на одной окружности, проходящей через точку Микеля.
Прислать комментарий     Решение


Задача 56629

Тема:   [ Точка Микеля ]
Сложность: 5
Классы: 8,9

Прямая пересекает стороны AB, BC и CA треугольника (или их продолжения) в точках C1, B1 и A1O, Oa, Ob и Oc — центры описанных окружностей треугольников  ABC, AB1C1, A1BC1 и A1B1CH, Ha, Hb и Hc — ортоцентры этих треугольников. Докажите, что:
а)  $ \triangle$OaObOc $ \sim$ $ \triangle$ABC.
б) серединные перпендикуляры к отрезкам  OH, OaHa, ObHb и OcHc пересекаются в одной точке.
Прислать комментарий     Решение


Задача 56630

Тема:   [ Точка Микеля ]
Сложность: 5
Классы: 8,9

Четырехугольник ABCD вписанный. Докажите, что точка Микеля для прямых, содержащих его стороны, лежит на отрезке, соединяющем точки пересечения продолжений сторон.
Прислать комментарий     Решение


Задача 56631

Тема:   [ Точка Микеля ]
Сложность: 5
Классы: 8,9

Точки A, B, C и D лежат на окружности с центром O. Прямые AB и CD пересекаются в точке E, а описанные окружности треугольников AEC и BED пересекаются в точках E и P. Докажите, что:
а) точки A, D, P и O лежат на одной окружности;
б)  $ \angle$EPO = 90o.
Прислать комментарий     Решение


Задача 56632

Тема:   [ Точка Микеля ]
Сложность: 6
Классы: 8,9

Даны четыре прямые. Докажите, что проекции точки Микеля на эти прямые лежат на одной прямой.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .