ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вписанная окружность треугольника ABC касается стороны BC в точке K, а вневписанная — в точке L. Докажите, что  CK = BL = (a + b - c)/2, где a, b, c — длины сторон треугольника.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 56657

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая отрезки PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.
Прислать комментарий     Решение


Задача 56658

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

Вписанная окружность треугольника ABC касается стороны BC в точке K, а вневписанная — в точке L. Докажите, что  CK = BL = (a + b - c)/2, где a, b, c — длины сторон треугольника.
Прислать комментарий     Решение


Задача 56659

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 3
Классы: 7,8

На основании AB равнобедренного треугольника ABC взята точка E, и в треугольники ACE и ECB вписаны окружности, касающиеся отрезка CE в точках M и N. Найдите длину отрезка MN, если известны длины отрезков AE и BE.
Прислать комментарий     Решение


Задача 56660

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 4
Классы: 7,8

Четырехугольник ABCD обладает тем свойством, что существует окружность, вписанная в угол BAD и касающаяся продолжений сторон BC и CD. Докажите, что  AB + BC = AD + DC.
Прислать комментарий     Решение


Задача 56661

Тема:   [ Прямые, касающиеся окружностей ]
Сложность: 4
Классы: 7,8

Общая внутренняя касательная к окружностям с радиусами R и r пересекает их общие внешние касательные в точках A и B и касается одной из окружностей в точке C. Докажите, что  AC . CB = Rr.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .