ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

При каких целых n число  20n + 16n – 3n – 1  делится на 323?

Вниз   Решение


Имеется бесконечное количество карточек, на каждой из которых написано какое-то натуральное число. Известно, что для любого натурального числа n существуют ровно n карточек, на которых написаны делители этого числа. Доказать, что каждое натуральное число встречается хотя бы на одной карточке.

ВверхВниз   Решение


Каково наибольшее n, при котором так можно расположить n точек на плоскости, чтобы каждые 3 из них служили вершинами прямоугольного треугольника?

ВверхВниз   Решение


Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

ВверхВниз   Решение


Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.

 

ВверхВниз   Решение


Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56859

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 2
Классы: 8

Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник правильный.
Прислать комментарий     Решение


Задача 56857

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Из точки M, лежащей внутри правильного треугольника ABC, опущены перпендикуляры MP, MQ и MR на стороны AB, BC и CA соответственно. Докажите, что  AP2 + BQ2 + CR2 = PB2 + QC2 + RA2 и  AP + BQ + CR = PB + QC + RA.
Прислать комментарий     Решение


Задача 56858

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Точки D и E делят стороны AC и AB правильного треугольника ABC в отношениях  AD : DC = BE : EA = 1 : 2. Прямые BD и CE пересекаются в точке O. Докажите, что  $ \angle$AOC = 90o.
Прислать комментарий     Решение


Задача 56860

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

Докажите, что если точка пересечения высот остроугольного треугольника делит высоты в одном и том же отношении, то треугольник правильный.
Прислать комментарий     Решение


Задача 56861

Тема:   [ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8

а) Докажите, что если  a + ha = b + hb = c + hc, то треугольник ABC правильный.
б) В треугольник ABC вписаны три квадрата: у одного две вершины лежат на стороне AC, у другого — на BC, у третьего — на AB. Докажите, что если все три квадрата равны, то треугольник ABC правильный.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .