ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На основании AB равнобедренного треугольника ABC выбрана точка D так, что окружность, вписанная в треугольник BCD, имеет тот же радиус, что и окружность, касающаяся продолжений отрезков CA и CD и отрезка AD (вневписанная окружность треугольника ACD). Докажите, что этот радиус равен одной четверти высоты треугольника ABC, опущенной на его боковую сторону.

Вниз   Решение


Выразите длину симедианы AS через длины сторон треугольника ABC.

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 56978

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Прямые AM и AN симметричны относительно биссектрисы угла A треугольника ABC (точки M и N лежат на прямой BC). Докажите, что  BM . BN/(CM . CN) = c2/b2. В частности, если AS — симедиана, то  BS/CS = c2/b2.
Прислать комментарий     Решение


Задача 56979

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Выразите длину симедианы AS через длины сторон треугольника ABC.
Прислать комментарий     Решение


Задача 56980

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Отрезок B1C1, где точки B1 и C1 лежат на лучах AC и AB, называют антипараллельным стороне BC, если  $ \angle$AB1C1 = $ \angle$ABC и  $ \angle$AC1B1 = $ \angle$ACB. Докажите, что симедиана AS делит пополам любой отрезок B1C1, антипараллельный стороне BC.
Прислать комментарий     Решение


Задача 56981

Тема:   [ Точка Лемуана ]
Сложность: 3
Классы: 9

Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1$ \bot$OA, где O — центр описанной окружности.
Прислать комментарий     Решение


Задача 56982

Тема:   [ Точка Лемуана ]
Сложность: 4
Классы: 9

Касательная в точке B к описанной окружности S треугольника ABC пересекает прямую AC в точке K. Из точки K проведена вторая касательная KD к окружности S. Докажите, что BD — симедиана треугольника ABC.
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .