ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Продолжения сторон четырехугольника ABCD, вписанного
в окружность с центром O, пересекаются в точках P и Q, а его
диагонали пересекаются в точке S.
|
Страница: << 1 2 3 4 [Всего задач: 20]
На стороне BC треугольника ABC взяты точки K1 и K2. Докажите, что
общие внешние касательные к вписанным окружностям треугольников ABK1 и
ACK2 общие внешние касательные к вписанным окружностям треугольников ABK2
и ACK1 пересекаются в одной точке.
Через каждую из точек пересечения продолжений сторон выпуклого четырехугольника
ABCD проведено по две прямые. Эти прямые делят четырехугольник на девять
четырехугольников.
Окружности S1 и S2, S2 и S3, S3 и S4, S4 и S1 касаются
внешним образом. Докажите, что четыре общие касательные (в точках касания
окружностей) либо пересекаются в одной точке, либо касаются одной окружности.
Докажите, что точка пересечения диагоналей описанного
четырехугольника совпадает с точкой пересечения диагоналей
четырехугольника, вершинами которого служат точки касания сторон
исходного четырехугольника с вписанной окружностью.
Продолжения сторон четырехугольника ABCD, вписанного
в окружность с центром O, пересекаются в точках P и Q, а его
диагонали пересекаются в точке S.
Страница: << 1 2 3 4 [Всего задач: 20]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке