ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 . В остроугольном треугольнике ABC проведены
медиана AM, биссектриса BK и высота CH. Может ли
площадь треугольника, образованного точками пересечения
этих отрезков, быть больше
0, 499SABC?
Выпуклый четырехугольник разделен диагоналями
на четыре треугольника. Докажите, что прямая, соединяющая
точки пересечения медиан двух противоположных треугольников,
перпендикулярна прямой, соединяющей точки пересечения высот двух других
треугольников.
Имеется две кучки камней - по 7 в каждой. За ход разрешается взять любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать.
Для определения эффективной температуры звёзд используют закон Стефана — Больцмана, согласно которому мощность излучения нагретого тела прямо пропорциональна площади его поверхности и четвёртой степени температуры: Ropf; = σ ST4 , где σ = 5,7· 10-8 — числовой коэффициент, площадь измеряется в квадратных метрах, температура — в градусах Кельвина, а мощность — в ваттах. Известно, что некоторая звезда имеет площадь S = Окружность радиуса r1 касается сторон DA, AB
и BC выпуклого четырехугольника ABCD, окружность радиуса r2 —
сторон AB, BC и CD; аналогично определяются r3 и r4.
Докажите, что
|
Страница: << 1 2 3 4 >> [Всего задач: 16]
Середины M и N диагоналей AC и BD выпуклого
четырехугольника ABCD не совпадают. Прямая MN пересекает
стороны AB и CD в точках M1 и N1. Докажите, что
если MM1 = NN1, то AD| BC.
Докажите, что два четырехугольника подобны тогда
и только тогда, когда у них равны четыре соответственных
угла и соответственные углы между диагоналями.
Выпуклый четырехугольник разделен диагоналями
на четыре треугольника. Докажите, что прямая, соединяющая
точки пересечения медиан двух противоположных треугольников,
перпендикулярна прямой, соединяющей точки пересечения высот двух других
треугольников.
Диагонали описанной трапеции ABCD с основаниями AD
и BC пересекаются в точке O. Радиусы вписанных окружностей
треугольников
AOD, AOB, BOC и COD равны
r1, r2, r3 и r4
соответственно. Докажите, что
Окружность радиуса r1 касается сторон DA, AB
и BC выпуклого четырехугольника ABCD, окружность радиуса r2 —
сторон AB, BC и CD; аналогично определяются r3 и r4.
Докажите, что
Страница: << 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке