ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Петя и Вася играют в игру. Для каждых пяти различных переменных из набора $x_{1}, ..., x_{10}$ имеется единственная карточка, на которой записано их произведение. Петя и Вася по очереди берут по карточке, начинает Петя. По правилам игры, когда все карточки разобраны, Вася присваивает переменным значения как хочет, но так, что $0 \leqslant x_{1} \leqslant ... \leqslant x_{10}$. Может ли Вася гарантированно добиться того, чтобы сумма произведений на его карточках была больше, чем у Пети? Координаты вершин треугольника рациональны. Докажите,
что координаты центра его описанной окружности также рациональны.
Четыре одинаковых кубика расположили на столе так, как показано на рисунке. Одна из граней каждого кубика покрашена в чёрный цвет. За один шаг разрешается повернуть одинаковым образом оба кубика из одного ряда (вертикального или горизонтального). Докажите, что, независимо от начального расположения чёрных граней, за несколько таких шагов можно расположить кубики чёрными гранями вверх. На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов? Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве? Пусть
|
Страница: << 1 2 3 >> [Всего задач: 11]
На дуге CD описанной окружности квадрата ABCD
взята точка P. Докажите, что
PA + PC =
Дан параллелограмм ABCD. Окружность, проходящая
через точку A, пересекает отрезки AB, AC и AD в точках P, Q и R
соответственно. Докажите, что
AP . AB = AR . AD = AQ . AC.
На дуге
A1A2n + 1 описанной окружности S
правильного (2n + 1)-угольника
A1...A2n + 1 взята точка A.
Докажите, что:
Пусть
Окружности радиуса x и y касаются окружности
радиуса R, причем расстояние между точками касания равно a.
Вычислите длину следующей общей касательной к первым двум окружностям:
Страница: << 1 2 3 >> [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке