ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан выпуклый четырехугольник ABCD. Пусть P, Q —
точки пересечения продолжений противоположных сторон
AB и CD, AD и BC соответственно, R — произвольная
точка внутри четырехугольника. Пусть K — точка пересечения
прямых BC и PR, L — точка пересечения прямых AB и QR,
M — точка пересечения прямых AK и DR. Докажите, что
точки L, M и C лежат на одной прямой.
а) Докажите, что отношение расстояний от точки эллипса
до фокуса и до одной из директрис равно эксцентриситету e.
Квадрат разделен на четыре части двумя
перпендикулярными прямыми, точка пересечения которых лежит
внутри его. Докажите, что если площади трех из этих частей
равны, то равны и площади всех четырех частей.
Шестиугольник ABCDEF вписан в окружность.
Диагонали AD, BE и CF являются диаметрами этой окружности.
Докажите, что площадь шестиугольника ABCDEF равна
удвоенной площади треугольника ACE.
Никакие три из четырех точек A, B, C, D не
лежат на одной прямой. Докажите, что угол между описанными
окружностями треугольников ABC и ABD равен углу
между описанными окружностями треугольников ACD и BCD.
Даны окружность и две точки A и B внутри ее.
Впишите в окружность прямоугольный треугольник так, чтобы его катеты
проходили через данные точки.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]
Дан четырёхугольник ABCD. Впишите в него параллелограмм с заданными направлениями сторон.
Постройте треугольник по a, mc и углу A.
Даны окружность и две точки A и B внутри ее.
Впишите в окружность прямоугольный треугольник так, чтобы его катеты
проходили через данные точки.
Продолжения сторон AB и CD прямоугольника ABCD
пересекают некоторую прямую в точках M и N, а продолжения
сторон AD и BC пересекают ту же прямую в точках P и Q.
Постройте прямоугольник ABCD, если даны точки M, N, P, Q и длина a
стороны AB.
Постройте треугольник по биссектрисе, медиане и высоте,
проведенным из одной вершины.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке