Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).

б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.

Вниз   Решение


Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны.

ВверхВниз   Решение


Гриб называется плохим, если в нём не менее 10 червей. В лукошке 90 плохих и 10 хороших грибов. Могут ли все грибы стать хорошими после того, как некоторые черви переползут из плохих грибов в хорошие?

ВверхВниз   Решение


На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?

ВверхВниз   Решение


Что больше:     или  

ВверхВниз   Решение


Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC.
Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что  B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC.

ВверхВниз   Решение


Из точки P опущены перпендикуляры PA1, PB1 и PC1 на стороны треугольника ABC. Прямая la соединяет середины отрезков PA и B1C1. Аналогично определяются прямые lb и lc. Докажите, что эти прямые пересекаются в одной точке.

ВверхВниз   Решение


Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 101]      



Задача 57215  (#08.021)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 3
Классы: 8,9

Потроить треугольник по стороне a, высоте к стороне b hb и медиане к стороне b mb.
Прислать комментарий     Решение


Задача 57216  (#08.022)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Потроить треугольник по высоте к стороне a ha, медиане к стороне a ma и высоте к стороне b hb.
Прислать комментарий     Решение


Задача 57217  (#08.023)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Потроить треугольник по сторонам a и b и медиане к стороне c mc.
Прислать комментарий     Решение


Задача 57218  (#08.024)

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 5
Классы: 8,9

Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и $ \angle$A.
Прислать комментарий     Решение


Задача 57219  (#08.025)

Темы:   [ Построение треугольников по различным элементам ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 5
Классы: 8,9

Потроить треугольник по сторонам a, b и биссектрисе к стороне c lc.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .