ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы построенные окружности были взаимно ортогональны.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 101]      



Задача 57250  (#08.055)

Тема:   [ Окружности (построения) ]
Сложность: 3
Классы: 8,9

Даны окружность S, точка A на ней и прямая l. Постройте окружность, касающуюся данной окружности в точке A и данной прямой.
Прислать комментарий     Решение


Задача 57251  (#08.056)

Тема:   [ Окружности (построения) ]
Сложность: 4
Классы: 8,9

а) Даны две точки A, B и прямая l. Постройте окружность, проходящую через точки A, B и касающуюся прямой l.
б) Даны две точки A и B и окружность S. Постройте окружность, проходящую через точки A и B и касающуюся окружности S.
Прислать комментарий     Решение


Задача 57252  (#08.056B)

Тема:   [ Окружности (построения) ]
Сложность: 5
Классы: 8,9

Даны три точки, не лежащие на одной прямой. Через каждые две из них провести окружность так, чтобы построенные окружности были взаимно ортогональны.
Прислать комментарий     Решение


Задача 57253  (#08.056B1)

Тема:   [ Окружности (построения) ]
Сложность: 5+
Классы: 8,9

Постройте окружность, равноудалённую от четырёх данных точек.
Прислать комментарий     Решение


Задача 57254  (#08.056B2)

Тема:   [ Окружности (построения) ]
Сложность: 5+
Классы: 8,9

Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .