ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 57257

Тема:   [ Окружность Аполлония ]
Сложность: 4
Классы: 9

Постройте треугольник по a, ha и b/c.
Прислать комментарий     Решение


Задача 57258

Тема:   [ Окружность Аполлония ]
Сложность: 4
Классы: 9

Постройте треугольник ABC, если известны длина биссектрисы CD и длины отрезков AD и BD, на которые она делит сторону AB.
Прислать комментарий     Решение


Задача 57259

Темы:   [ Окружность Аполлония ]
[ Отношение, в котором биссектриса делит сторону ]
[ Метод ГМТ ]
[ Построения (прочее) ]
Сложность: 5
Классы: 8,9

На прямой даны четыре точки A, B, C, D в указанном порядке. Постройте точку M, из которой отрезки AB, BC, CD видны под равными углами.
Прислать комментарий     Решение


Задача 57260

Тема:   [ Окружность Аполлония ]
Сложность: 5
Классы: 9

На плоскости даны два отрезка AB и A'B'. Постройте точку O так, чтобы треугольники AOB и A'OB' были подобны (одинаковые буквы обозначают соответственные вершины подобных треугольников).
Прислать комментарий     Решение


Задача 57261

Тема:   [ Окружность Аполлония ]
Сложность: 5
Классы: 9

Точки A и B лежат на диаметре данной окружности. Проведите через них две равные хорды с общим концом.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .