ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M. а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
|
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 101]
На плоскости даны два отрезка AB и A'B'. Постройте
точку O так, чтобы треугольники AOB и A'OB' были подобны
(одинаковые буквы обозначают соответственные вершины подобных
треугольников).
Точки A и B лежат на диаметре данной окружности.
Проведите через них две равные хорды с общим концом.
а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Постройте правильный десятиугольник.
Постройте прямоугольник с данным отношением
сторон, зная по одной точке на каждой из его сторон.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 101]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке