ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что в любой выпуклый многоугольник площади 1 можно поместить треугольник, площадь которого не меньше: а) 1/4; б) 3/8.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 103]      



Задача 57359  (#09.053)

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

Докажите, что площадь треугольника, вершины которого лежат на сторонах параллелограмма, не превосходит половины площади параллелограмма.
Прислать комментарий     Решение


Задача 57360  (#09.054)

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5
Классы: 9

Докажите, что любой остроугольный треугольник площади 1 можно поместить в прямоугольный треугольник площади $ \sqrt{3}$.
Прислать комментарий     Решение


Задача 57361  (#09.055)

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 9

а) Докажите, что выпуклый многоугольник площади S можно поместить в некоторый прямоугольник площади не более 2S.
б) Докажите, что в выпуклый многоугольник площади S можно вписать параллелограмм площади не менее S/2.
Прислать комментарий     Решение


Задача 57362  (#09.056)

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 9

Докажите, что в любой выпуклый многоугольник площади 1 можно поместить треугольник, площадь которого не меньше: а) 1/4; б) 3/8.
Прислать комментарий     Решение


Задача 57363  (#09.057)

Тема:   [ Площадь. Одна фигура лежит внутри другой ]
Сложность: 6
Классы: 9

Выпуклый n-угольник помещен в квадрат со стороной 1. Докажите, что найдутся три такие вершины A, B и C этого n-угольника, что площадь треугольника ABC не превосходит: а) 8/n2; б) 16$ \pi$/n3.
Прислать комментарий     Решение


Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 103]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .