ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадратная комната разгорожена перегородками на несколько меньших квадратных комнат. Длина стороны каждой комнаты – целое число. В ромб ABCD вписана окружность. Прямая, касающаяся этой окружности в точке P, пересекает стороны AB, BC и продолжение стороны AD соответственно в точках N, Q и M, причём MN : NP : PQ = 7 : 1 : 2. Найдите углы ромба. Пусть
A1, B1,..., F1 — середины сторон
AB, BC,..., FA произвольного шестиугольника. Докажите, что точки
пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают.
Треугольник ABC правильный, M — некоторая точка.
Докажите, что если числа AM, BM и CM образуют геометрическую
прогрессию, то знаменатель этой прогрессии меньше 2.
Окружность с центром O касается сторон угла с вершиной M. На одной стороне угла взята точка K, а на другой стороне угла взята точка L так, что Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число. Докажите, что медианы треугольника ABC пересекаются в одной
точке и делятся ею в отношении 2 : 1, считая от вершины.
Докажите, что
|
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1. Докажите, что
площадь одного из треугольников
AB1C1, A1BC1, A1B1C не
превосходит:
Докажите, что
Докажите, что в треугольнике угол A острый тогда и
только тогда, когда ma > a/2.
Пусть ABCD и
A1B1C1D1 — два выпуклых
четырехугольника с соответственно равными сторонами. Докажите, что
если
В остроугольном треугольнике ABC наибольшая из
высот AH равна медиане BM. Докажите, что
Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 100]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке