ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Каждая из сторон выпуклого четырехугольника разделена
на пять равных частей и соответствующие точки противоположных сторон
соединены (см. рис.). Докажите, что площадь среднего (заштрихованного)
четырехугольника в 25 раз меньше площади исходного. В каждой клетке доски 5×5 клеток сидит жук.
В некоторый момент все жуки переползают на соседние (по
горизонтали или вертикали) клетки. Обязательно ли при
этом останется пустая клетка?
а) Внутри треугольника ABC расположен отрезок MN.
Докажите, что длина MN не превосходит наибольшей стороны
треугольника.
|
Страница: 1 [Всего задач: 5]
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.
а) Внутри треугольника ABC расположен отрезок MN.
Докажите, что длина MN не превосходит наибольшей стороны
треугольника.
Внутри сектора AOB круга радиуса R = AO = BO лежит
отрезок MN. Докажите, что MN
Внутри окружности расположен выпуклый пятиугольник.
Докажите, что хотя бы одна из его сторон не больше стороны правильного
пятиугольника, вписанного в эту окружность.
Даны треугольник ABC со сторонами a > b > c и
произвольная точка O внутри его. Пусть прямые
AO, BO, CO пересекают
стороны треугольника в точках P, Q, R. Докажите, что
OP + OQ + OR < a.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке