ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20. Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1
пересекаются в одной точке M. |
Страница: << 1 2 [Всего задач: 9]
Точки A1, B1 и C1 взяты на сторонах BC, CA и AB треугольника ABC, причём отрезки AA1, BB1 и CC1
пересекаются в одной точке M.
Из точки M, лежащей внутри данного треугольника ABC, опущены
перпендикуляры MA1, MB1, MC1 на прямые BC, CA, AB. Для каких точек M внутри данного треугольника ABC величина
Дан треугольник ABC. Найдите внутри его точку O, для которой сумма
длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот
случай, когда один из углов треугольника больше
120o.)
Найдите внутри треугольника ABC точку O, для которой сумма
квадратов расстояний от нее до сторон треугольника минимальна.
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке