ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Трапеция ABCD с основанием AD разрезана диагональю AC на два треугольника. Прямая l, параллельная основанию, разрезает эти треугольники на два треугольника и два четырехугольника. При каком положении прямой l сумма площадей полученных треугольников минимальна?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 57549

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 2+
Классы: 9

Внутри выпуклого четырехугольника найдите точку, сумма расстояний от которой до вершин была бы наименьшей.
Прислать комментарий     Решение


Задача 57550

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9

Диагонали выпуклого четырехугольника ABCD пересекаются в точке O. Какую наименьшую площадь может иметь этот четырехугольник, если площадь треугольника AOB равна 4, а площадь треугольника COD равна 9?
Прислать комментарий     Решение


Задача 57551

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9

Трапеция ABCD с основанием AD разрезана диагональю AC на два треугольника. Прямая l, параллельная основанию, разрезает эти треугольники на два треугольника и два четырехугольника. При каком положении прямой l сумма площадей полученных треугольников минимальна?
Прислать комментарий     Решение


Задача 57552

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 3
Классы: 9

Площадь трапеции равна 1. Какую наименьшую величину может иметь наибольшая диагональ этой трапеции?
Прислать комментарий     Решение


Задача 57553

Тема:   [ Четырехугольники (экстремальные свойства) ]
Сложность: 5
Классы: 9

На основании AD трапеции ABCD дана точка K. Найдите на основании BC точку M, для которой площадь общей части треугольников AMD и BKC максимальна.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .