ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Расстоянием между двумя произвольными вершинами дерева будем называть длину простого пути, соединяющего их. Удалённостью вершины дерева назовём сумму расстояний от неё до всех остальных вершин. Докажите, что в дереве, у которого есть две вершины с удалённостями, отличающимися на 1, нечётное число вершин.

Вниз   Решение


В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 82]      



Задача 57633  (#12.050)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


Прислать комментарий     Решение

Задача 57634  (#12.051)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

Докажите, что если  $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ = $ {\frac{1}{l_a}}$, то  $ \angle$A = 120o.
Прислать комментарий     Решение


Задача 57635  (#12.052)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.
Прислать комментарий     Решение


Задача 57636  (#12.053)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 3
Классы: 9

В треугольнике ABC проведены биссектрисы AD и BE. Найдите величину угла C, если известно, что  AD . BC = BE . AC и AC$ \ne$BC.
Прислать комментарий     Решение


Задача 57637  (#12.054)

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 4
Классы: 9

Найдите угол B треугольника ABC, если длина высоты CH равна половине длины стороны AB, а  $ \angle$BAC = 75o.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .