Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что при параллельном переносе окружность переходит в окружность.

Вниз   Решение


Точка X лежит внутри треугольника ABC, $ \alpha$ = SBXC, $ \beta$ = SCXA и  $ \gamma$ = SAXB. Пусть A1, B1 и C1 — проекции точек A, B и C на произвольную прямую l. Докажите, что длина вектора $ \alpha$$ \overrightarrow{AA_1}$ + $ \beta$$ \overrightarrow{BB_1}$ + $ \gamma$$ \overrightarrow{CC_1}$ равна ($ \alpha$ + $ \beta$ + $ \gamma$)d, где d — расстояние от точки X до прямой l.

ВверхВниз   Решение


Докажите, что кривая, изогонально сопряженная прямой, не проходящей через вершины треугольника, является коникой, проходящей через вершины треугольника.

ВверхВниз   Решение


Постройте окружность, касающуюся трех данных окружностей (задача Аполлония).

ВверхВниз   Решение


Докажите, что множество точек, равноудаленных от данной точки и данной окружности, представляет собой эллипс, гиперболу или луч.

ВверхВниз   Решение


Пусть a = (a1, a2) и  b = (b1, b2). Докажите, что a $ \vee$ b = a1b2 - a2b1.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 57730

Тема:   [ Псевдоскалярное произведение ]
Сложность: 3+
Классы: 8,9

Докажите, что:
а) ($ \lambda$a) $ \vee$ b = $ \lambda$(a $ \vee$ b);
б) a $ \vee$ (b + c) = a $ \vee$ b + a $ \vee$ c.
Прислать комментарий     Решение


Задача 57731

Тема:   [ Псевдоскалярное произведение ]
Сложность: 3+
Классы: 8,9

Пусть a = (a1, a2) и  b = (b1, b2). Докажите, что a $ \vee$ b = a1b2 - a2b1.
Прислать комментарий     Решение


Задача 57732

Тема:   [ Псевдоскалярное произведение ]
Сложность: 3+
Классы: 8,9

а) Докажите, что S(A, B, C) = - S(B, A, C) = S(B, C, A).
б) Докажите, что для любых точек A, B, C и D справедливо равенство S(A, B, C) = S(D, A, B) + S(D, B, C) + S(D, C, A).
Прислать комментарий     Решение


Задача 57733

Тема:   [ Псевдоскалярное произведение ]
Сложность: 4
Классы: 8,9

Три бегуна A, B и C бегут по параллельным дорожкам с постоянными скоростями. В начальный момент площадь треугольника ABC равна 2, через 5 с равна 3. Чему может быть она равна еще через 5 с?
Прислать комментарий     Решение


Задача 57734

Тема:   [ Псевдоскалярное произведение ]
Сложность: 4
Классы: 8,9

По трем прямолинейным дорогам с постоянными скоростями идут три пешехода. В начальный момент времени они не находились на одной прямой. Докажите, что они могут оказаться на одной прямой не более двух раз.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .