ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Существует ли такое целое число r, что Число e определяется равенством а) б) в) e – иррациональное число. Бинарный метод возведения в степень. Предположим, что необходимо возвести число x в степень n. Если, например, n = 16, то это можно сделать выполнив 15 умножений x16 = x . x . ... . x, а можно обойтись лишь четырьмя:
x1 = x . x = x2, x2 = x1 . x1 = x4, x3 = x2 . x2 = x8, x4 = x3 . x3 = x16.
Пусть
n = 2e1 + 2e2 +...+ 2er (e1 > e2 >...> er Придумайте алгоритм, который позволял
бы вычислять xn при помощи
b(n) = e1 + умножений, где
Точки
A1,..., An лежат на одной окружности, а M —
их центр масс. Прямые
MA1,..., MAn пересекают эту
окружность в точках
B1,..., Bn (отличных от
A1,..., An).
Докажите, что
MA1 +...+ MAn |
Страница: << 1 2 [Всего задач: 9]
На сторонах AB, BC, CA треугольника ABC взяты
такие точки A1 и B2, B1 и C2, C1 и A2, что
отрезки A1A2, B1B2 и C1C2 параллельны сторонам
треугольника и пересекаются в точке P. Докажите, что
PA1 . PA2 + PB1 . PB2 + PC1 . PC2 = R2 - OP2, где O — центр
описанной окружности.
Внутри окружности радиуса R расположено n точек.
Докажите, что сумма квадратов попарных расстояний между
ними не превосходит n2R2.
Внутри треугольника ABC взята точка P. Пусть da, db и dc — расстояния от точки P до сторон треугольника, Ra, Rb и Rc — расстояния от нее до вершин. Докажите, что
3(da2 + db2 + dc2)
Точки
A1,..., An лежат на одной окружности, а M —
их центр масс. Прямые
MA1,..., MAn пересекают эту
окружность в точках
B1,..., Bn (отличных от
A1,..., An).
Докажите, что
MA1 +...+ MAn
Страница: << 1 2 [Всего задач: 9]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке