ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что если точку отразить симметрично относительно точек O1, O2 и O3, а затем еще раз отразить симметрично относительно этих же точек, то она вернется на место. Решение |
Страница: 1 [Всего задач: 4]
б) Докажите, что композиция параллельного переноса и центральной симметрии (в обоих порядках) является центральной симметрией.
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии. в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
Страница: 1 [Всего задач: 4] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|