ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если точку отразить симметрично относительно точек O1, O2 и O3, а затем еще раз отразить симметрично относительно этих же точек, то она вернется на место.

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 57846

Темы:   [ Композиция центральных симметрий ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3
Классы: 9

а) Докажите, что композиция двух центральных симметрий является параллельным переносом.
б) Докажите, что композиция параллельного переноса и центральной симметрии (в обоих порядках) является центральной симметрией.
Прислать комментарий     Решение


Задача 57847

Тема:   [ Композиция центральных симметрий ]
Сложность: 3
Классы: 9

Докажите, что если точку отразить симметрично относительно точек O1, O2 и O3, а затем еще раз отразить симметрично относительно этих же точек, то она вернется на место.
Прислать комментарий     Решение


Задача 57849

Тема:   [ Свойства симметрии и центра симметрии ]
Сложность: 4
Классы: 9

На отрезке AB дано n пар точек, симметричных относительно его середины; n точек окрашено в синий цвет, остальные — в красный. Докажите, что сумма расстояний от A до синих точек равна сумме расстояний от B до красных точек.
Прислать комментарий     Решение


Задача 57848

Темы:   [ Свойства симметрии и центра симметрии ]
[ Композиция центральных симметрий ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

а) Докажите, что ограниченная фигура не может иметь более одного центра симметрии.
б) Докажите, что никакая фигура не может иметь ровно двух центров симметрии.
в) Пусть M — конечное множество точек на плоскости. Точку O назовем к почти центром симметриик множества M, если из M можно выбросить одну точку так, что O будет центром симметрии оставшегося множества. Сколько к почти центров симметриик может иметь M?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .