ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Разность двух целых чисел умножили на их произведение. Могло ли получиться число 1999? Докажите, что В параллелограмме ABCD диагональ AC больше
диагонали BD; M — такая точка диагонали AC, что
четырехугольник BCDM вписанный. Докажите, что прямая BD
является общей касательной к описанным окружностям
треугольников ABM и ADM.
На прямой l даны точки A, B, C и D. Через точки A и
B, а также через точки C и D проводятся параллельные прямые.
На сторонах BC и CD параллелограмма ABCD
построены внешним образом правильные треугольники BCP
и CDQ. Докажите, что треугольник APQ правильный.
|
Страница: 1 2 3 4 >> [Всего задач: 17]
На сторонах треугольника ABC внешним образом построены
правильные треугольники A1BC, AB1C и ABC1. Докажите,
что
AA1 = BB1 = CC1.
На отрезке AE по одну сторону от него построены равносторонние
треугольники ABC и CDE; M и P — середины отрезков
AD и BE. Докажите, что треугольник CPM равносторонний.
Постройте равносторонний треугольник ABC так,
чтобы его вершины лежали на трех данных параллельных прямых.
Рассмотрим всевозможные равносторонние треугольники PKM,
вершина P которых фиксирована, а вершина K лежит в данном
квадрате. Найдите геометрическое место вершин M.
На сторонах BC и CD параллелограмма ABCD
построены внешним образом правильные треугольники BCP
и CDQ. Докажите, что треугольник APQ правильный.
Страница: 1 2 3 4 >> [Всего задач: 17]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке