ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Квадрат со стороной 1 покрыт несколькими меньшими квадратами
со сторонами, параллельными его сторонам. Докажите, что среди
них можно выбрать непересекающиеся квадраты, сумма площадей
которых не меньше 1/9.
Точка $X$ расположена внутри параллелограмма $ABCD$. Докажите, что $S_{ABX}+S_{CDX}=S_{BCX}+S_{ADX}$. На плоскости лежат две одинаковые буквы а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1? В пачке 20 карточек: синие, красные и желтые. Синих в шесть раз меньше, чем желтых, и красных меньше, чем желтых. Какое наименьшее количество карточек надо вытащить не глядя, чтобы среди них обязательно оказалась красная? Треугольник, составленный: а) из медиан; б) из высот треугольника ABC, подобен треугольнику ABC. На клетчатом листе закрасили 25 клеток. Может ли каждая из них иметь нечётное число закрашенных соседей? Разрежьте правильный шестиугольник на 5 частей и сложите из них
квадрат.
На отрезке длиной 1 расположено несколько отрезков, полностью
его покрывающих. Докажите, что можно выбросить некоторые из них
так, чтобы оставшиеся по-прежнему покрывали отрезок и сумма их
длин не превосходила 2.
Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2.
Докажите, что точка пересечения прямых l1 и l2 лежит на
описанной окружности треугольника A1OA2.
|
Страница: 1 2 3 >> [Всего задач: 11]
Докажите, что при повороте на угол
(x cos
Даны точки A и B и окружность S. Постройте
на окружности S такие точки C и D, что AC| BD и дуга
CD имеет данную величину
Поворот с центром O переводит прямую l1 в прямую l2, а точку A1, лежащую на прямой l1, — в точку A2.
Докажите, что точка пересечения прямых l1 и l2 лежит на
описанной окружности треугольника A1OA2.
На плоскости лежат две одинаковые буквы
По двум прямым, пересекающимся в точке P,
равномерно с одинаковой скоростью движутся две точки:
по одной прямой — точка A, по другой — точка B. Через
точку P они проходят не одновременно. Докажите, что
в любой момент времени описанная окружность треугольника
ABP проходит через некоторую фиксированную точку, отличную от P.
Страница: 1 2 3 >> [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке