Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Василий Петров выполняет задание по английскому языку. В этом задании есть 10 английских выражений и их переводы на русский в случайном порядке. Нужно установить верные соответствия между выражениями и их переводами. За каждое правильно установленное соответствие даётся 1 балл. Таким образом, можно получить от 0 до 10 баллов. Вася ничего не знает, поэтому выбирает варианты наугад. Найдите вероятность того, что он получит ровно 9 баллов.

Вниз   Решение


Постройте треугольник ABC по стороне a, высоте ha и углу A.

ВверхВниз   Решение


Основание равнобедренного треугольника составляет четверть его периметра. Из произвольной точки основания проведены прямые, параллельные боковым сторонам. Во сколько раз периметр треугольника больше периметра отсечённого параллелограмма?

ВверхВниз   Решение


Определить коэффициенты, которые будут стоять при x17 и x18 после раскрытия скобок и приведения подобных членов в выражении

(1 + x5 + x7)20.

ВверхВниз   Решение


Постройте равносторонний треугольник ABC так, чтобы его вершины лежали на трех данных параллельных прямых.

ВверхВниз   Решение


На окружности с центром O даны точки A1,..., An, делящие ее на равные дуги, и точка X. Докажите, что точки, симметричные X относительно прямых OA1,..., OAn, образуют правильный многоугольник.

ВверхВниз   Решение


Докажите, что при повороте x'' = x'cosφ + y'sinφ,  y'' = - x'sinφ + y'cosφ выражение ax'2 + 2bx'y' + cy'2 переходит в a1x'2 + 2b1x''y'' + c1y'2, причём a1c1 - b12 = ac - b2.

ВверхВниз   Решение


Пусть O — центр вписанной окружности треугольника ABC, D — точка касания ее со стороной AC, B1 — середина стороны AC. Докажите, что прямая B1O делит отрезок BD пополам.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 55767

Темы:   [ Гомотетия: построения и геометрические места точек ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Гомотетия помогает решить задачу ]
[ Гомотетичные окружности ]
[ Гомотетия (ГМТ) ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

На окружности фиксированы точки A и B, а точка C движется по этой окружности. Найдите геометрическое место точек пересечения медиан треугольников ABC.

Прислать комментарий     Решение


Задача 57989

Тема:   [ Гомотетичные окружности ]
Сложность: 4+
Классы: 9

а) Вписанная окружность треугольника ABC касается стороны AC в точке D, DM — ее диаметр. Прямая BM пересекает сторону AC в точке K. Докажите, что AK = DC.
б) В окружности проведены перпендикулярные диаметры AB и CD. Из точки M, лежащей вне окружности, проведены касательные к окружности, пересекающие прямую AB в точках E и H, а также прямые MC и MD, пересекающие прямую AB в точках F и K. Докажите, что EF = KH.
Прислать комментарий     Решение


Задача 57990

Тема:   [ Гомотетичные окружности ]
Сложность: 4+
Классы: 9

Пусть O — центр вписанной окружности треугольника ABC, D — точка касания ее со стороной AC, B1 — середина стороны AC. Докажите, что прямая B1O делит отрезок BD пополам.
Прислать комментарий     Решение


Задача 57991

Тема:   [ Гомотетичные окружности ]
Сложность: 5
Классы: 9

Окружности $ \alpha$, $ \beta$ и $ \gamma$ имеют одинаковые радиусы и касаются сторон углов A, B и C треугольника ABC соответственно. Окружность $ \delta$ касается внешним образом всех трех окружностей $ \alpha$, $ \beta$ и $ \gamma$. Докажите, что центр окружности $ \delta$ лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.
Прислать комментарий     Решение


Задача 57992

Тема:   [ Гомотетичные окружности ]
Сложность: 5
Классы: 9

Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .