ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что многоугольник нельзя покрыть двумя многоугольниками, гомотетичными ему с коэффициентом k, где 0 < k < 1.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 58056  (#20.010B)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.
Прислать комментарий     Решение


Задача 58057  (#20.011)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4+
Классы: 8,9

Докажите, что в любом выпуклом пятиугольнике найдутся три диагонали, из которых можно составить треугольник.
Прислать комментарий     Решение


Задача 58058  (#20.012)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Гомотетичные многоугольники ]
Сложность: 5-
Классы: 8,9,10

Докажите, что многоугольник нельзя покрыть двумя многоугольниками, гомотетичными ему с коэффициентом k, где 0 < k < 1.
Прислать комментарий     Решение


Задача 58059  (#20.013)

Темы:   [ Наименьшее или наибольшее расстояние (длина) ]
[ Системы точек ]
Сложность: 5+
Классы: 8,9

На плоскости дано конечное число точек, причем любая прямая, проходящая через две из данных точек, содержит еще одну данную точку. Докажите, что все данные точки лежат на одной прямой (Сильвестр).
Прислать комментарий     Решение


Задача 58060  (#20.014)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 6
Классы: 8,9

На плоскости дано конечное число попарно непараллельных прямых, причем через точку пересечения любых двух из них проходит еще одна из данных прямых. Докажите, что все эти прямые проходят через одну точку.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .