Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Будем называть флажком пятиугольник, вершины которого — вершины некоторого квадрата и его центр. Разрежьте фигуру ниже справа на флажки (не обязательно одинаковые).

Вниз   Решение


200 учеников выстроены прямоугольником по 10 человек в каждом поперечном ряду и по 20 человек в каждом продольном ряду. В каждом продольном ряду выбран самый высокий ученик, а затем из отобранных 10 человек выбран самый низкий. С другой стороны, в каждом поперечном ряду выбран самый низкий ученик, а затем среди отобранных 20 выбран самый высокий. Кто из двоих окажется выше?

ВверхВниз   Решение


На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

ВверхВниз   Решение


Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.

ВверхВниз   Решение


Решить систему уравнений:   x1x2 = x2x3 = ... = xn–1xn = xnx1 = 1.

ВверхВниз   Решение


Дана бесконечная клетчатая бумага со стороной клетки, равной единице. Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от одной клетки до другой (считается путь центра ладьи). В какое наименьшее число красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?

ВверхВниз   Решение


В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились  а) на 2;  б) на 3?

ВверхВниз   Решение


На доске написаны числа 1, 2, 3, ..., 19, 20. Разрешается стереть любые два числа a и b и вместо них написать число  a + b – 1.
Какое число может остаться на доске после 19 таких операций?

ВверхВниз   Решение


В некотором городе каждая улица идет либо с севера на юг, либо с востока на запад. Автомобилист совершил прогулку по этому городу, сделав ровно сто поворотов налево. Сколько поворотов направо он мог сделать при этом, если никакое место он не проезжал дважды и в конце вернулся назад?

ВверхВниз   Решение


Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

ВверхВниз   Решение


Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 58080  (#21.001)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
[ Раскраски ]
Сложность: 3
Классы: 7,8

Узлы бесконечной клетчатой бумаги раскрашены в два цвета. Докажите, что существуют две горизонтальные и две вертикальные прямые, на пересечении которых лежат точки одного цвета.
Прислать комментарий     Решение


Задача 58081  (#21.002)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 7,8,9

Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.
Прислать комментарий     Решение


Задача 58082  (#21.003)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 7,8,9

В прямоугольнике 3×4 расположено 6 точек. Докажите, что среди них найдутся две точки, расстояние между которыми не превосходит $ \sqrt{5}$.
Прислать комментарий     Решение


Задача 58083  (#21.004)

Темы:   [ Плоскость, разрезанная прямыми ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4-
Классы: 7,8

На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки?

Прислать комментарий     Решение

Задача 58084  (#21.005)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Принцип Дирихле (углы и длины) ]
[ Круг, сектор, сегмент и проч. ]
Сложность: 4
Классы: 7,8

На плоскости дано 25 точек, причем среди любых трех из них найдутся две на расстоянии меньше 1. Докажите, что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .