ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны точки
A1,..., An. Рассмотрим окружность
радиуса R, содержащую некоторые из них. Построим затем
окружность радиуса R с центром в центре масс точек,
лежащих внутри первой окружности, и т. д. Докажите, что
этот процесс остановится, т. е. окружности начнут совпадать.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет
вершин других треугольников. Пусть n и m — количества вершин этих
треугольников, лежащих на границе исходного многоугольника и внутри его.
Квадратное поле разбито на 100 одинаковых участков, 9 из которых поросли бурьяном. Известно, что бурьян за год распространяется на те и только те участки, у каждого из которых не менее двух соседних участков уже поражены бурьяном (участки соседние, если они имеют общую сторону). Докажите, что полностью все поле бурьяном не зарастёт.
Докажите, что существуют равновеликие многоугольники, которые
нельзя разбить на многоугольники (возможно, невыпуклые),
переводящиеся друг в друга параллельным переносом.
Докажите, что выпуклый многоугольник нельзя
разрезать на конечное число невыпуклых четырехугольников.
Даны точки
A1,..., An. Рассмотрим окружность
радиуса R, содержащую некоторые из них. Построим затем
окружность радиуса R с центром в центре масс точек,
лежащих внутри первой окружности, и т. д. Докажите, что
этот процесс остановится, т. е. окружности начнут совпадать.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке