ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В треугольнике ABC биссектриса угла C пересекает сторону AB в точке M, а биссектриса угла A пересекает отрезок CM в точке T. Оказалось, что отрезки CM и AT разбили треугольник ABC на три равнобедренных треугольника. Найдите углы треугольника ABC.

Вниз   Решение


Длина взрослого червяка 1 метр. Если червяк взрослый, его можно разрезать на две части в любом отношении длин. При этом получаются два новых червяка, которые сразу начинают расти со скоростью 1 метр в час каждый. Когда длина червяка достигает метра, он становится взрослым и прекращает расти. Можно ли из одного взрослого червяка получить 10 взрослых червяков быстрее чем за час?

ВверхВниз   Решение


Начало координат является центром симметрии выпуклой фигуры площадью более 4. Докажите, что эта фигура содержит хотя бы одну точку с целыми координатами, отличную от начала координат.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 58215  (#24.008)

 [Теорема Минковского]
Тема:   [ Теорема Минковского ]
Сложность: 6
Классы: 9,10

Начало координат является центром симметрии выпуклой фигуры площадью более 4. Докажите, что эта фигура содержит хотя бы одну точку с целыми координатами, отличную от начала координат.
Прислать комментарий     Решение


Задача 58216  (#24.009)

Тема:   [ Теорема Минковского ]
Сложность: 6
Классы: 9,10

а) Во всех узлах целочисленной решетки, кроме одного, в котором находится охотник, растут деревья, стволы которых имеют радиус r. Докажите, что охотник не сможет увидеть зайца, находящегося от него на расстоянии больше 1/r.
б) Пусть n — натуральное число. Во всех точках целочисленной решетки, расположенных строго внутри окружности радиуса $ \sqrt{n^2+1}$ с центром в начале координат и отличных от начала координат, растут деревья радиуса r. Докажите, что если r < $ {\frac{1}{\sqrt{n^2+1}}}$, то на указанной окружности есть точка, которую можно увидеть из начала координат.
Прислать комментарий     Решение


Задача 58217  (#24.010B-)

Тема:   [ Теорема Минковского ]
Сложность: 7
Классы: 9,10

Внутри выпуклой фигуры с площадью S и полупериметром p нет точек целочисленной решётки. Докажите, что S$ \le$p.
Прислать комментарий     Решение


Задача 58218  (#24.010B-1)

Тема:   [ Теорема Минковского ]
Сложность: 7
Классы: 9,10

Выпуклая фигура $ \Phi$ имеет площадь S и полупериметр p. Докажите, что если S > np для некоторого натурального n, то $ \Phi$ содержит по крайней мере n целочисленных точек.
Прислать комментарий     Решение


Задача 58219  (#24.010)

Тема:   [ Теорема Минковского ]
Сложность: 7
Классы: 9,10

Внутри выпуклой фигуры с площадью S и полупериметром p лежит n узлов решетки. Докажите, что n > S - p.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .