ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г. а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна
(n - 2) . 180o.
Докажите, что окружность при осевой симметрии переходит в окружность.
Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный. В клетках доски n×n произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на n + 1. Дан треугольник ABC. Построены четыре окружности равного радиуса На плоскости расположено n |
Страница: 1 [Всего задач: 5]
Постройте замкнутую шестизвенную ломаную, пересекающую каждое свое
звено ровно один раз.
Можно ли нарисовать на плоскости шесть точек
и так соединить их непересекающимися отрезками, что
каждая точка будет соединена ровно с четырьмя другими?
Точка O, лежащая внутри выпуклого многоугольника
A1...An,
обладает тем свойством, что любая прямая OAi содержит еще одну
вершину Aj. Докажите, что кроме точки O никакая другая точка
не обладает этим свойством.
На окружности отметили 4n точек и окрасили их
через одну в красный и синий цвета. Точки каждого цвета
разбили на пары, а точки каждой пары соединили отрезками
того же цвета. Докажите, что если никакие три отрезка не
пересекаются в одной точке, то найдется по крайней мере n
точек пересечения красных отрезков с синими.
На плоскости расположено n
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке