Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Дано число, имеющее нечётное число разрядов. Доказать, что одну из его цифр можно вычеркнуть так, что в полученном числе количество семёрок на чётных местах будет равно количеству семёрок на нечётных местах.

Вниз   Решение


Из отрезков, имеющих длины a, b и c, можно составить треугольник. Доказать, что из отрезков с длинами $ {\frac{1}{a+c}}$, $ {\frac{1}{b+c}}$, $ {\frac{1}{a+b}}$ также можно составить треугольник.

ВверхВниз   Решение


Докажите, что медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении  2 : 1,  считая от вершины.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD лучи AB и DC пересекаются в точке K. На биссектрисе угла AKD нашлась такая точка P, что прямые BP и CP делят пополам отрезки AC и BD соответственно. Докажите, что  AB = CD.

ВверхВниз   Решение


Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?

ВверхВниз   Решение


Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

ВверхВниз   Решение


Два треугольника пересекаются. Докажите, что внутри описанной окружности одного из них лежит хотя бы одна вершина другого. (Треугольником считается часть плоскости, ограниченная замкнутой трёхзвенной ломаной; точка, лежащая на окружности, считается лежащей внутри неё.)

ВверхВниз   Решение


К некоторому числу прибавили его сумму цифр и получили 2014. Приведите пример такого числа.

ВверхВниз   Решение


Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 19]      



Задача 58365

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 4+
Классы: 8,9

а) Докажите, что существует единственное аффинное преобразование, которое переводит данную точку O в данную точку O', а данный базис векторов  e1, e2 — в данный базис  e1', e2'.
б) Даны два треугольника ABC и A1B1C1. Докажите, что существует единственное аффинное преобразование, переводящее точку A в A1, B — в B1, C — в C1.
в) Даны два параллелограмма. Докажите, что существует единственное аффинное преобразование, которое один из них переводит в другой.
Прислать комментарий     Решение


Задача 58366

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 5
Классы: 8,9

Каждая диагональ выпуклого пятиугольника параллельна одной из его сторон. Докажите, что аффинным преобразованием этот пятиугольник можно перевести в правильный пятиугольник.
Прислать комментарий     Решение


Задача 58367

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 5
Классы: 8,9

Докажите, что если при аффинном (не тождественном) преобразовании L каждая точка некоторой прямой l переходит в себя, то все прямые вида ML(M), где в качестве M берутся произвольные точки, не лежащие на прямой l, параллельны друг другу.
Прислать комментарий     Решение


Задача 58368

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 5
Классы: 8,9

Докажите, что любое аффинное преобразование можно представить в виде композиции двух растяжений и аффинного преобразования, переводящего любой треугольник в подобный ему треугольник.
Прислать комментарий     Решение


Задача 58369

Тема:   [ Аффинные преобразования и их свойства ]
Сложность: 6
Классы: 8,9

На плоскости дан многоугольник A1A2...An и точка O внутри его. Докажите, что равенства

$\displaystyle \overrightarrow{OA_1}$ + $\displaystyle \overrightarrow{OA_3}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_2}$,    
 1$\displaystyle \overrightarrow{OA_2}$ + $\displaystyle \overrightarrow{OA_4}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_3}$,    
to4.5cm $\displaystyle \dotfill$    
$\displaystyle \overrightarrow{OA_{n-1}}$ + $\displaystyle \overrightarrow{OA_1}$ = 2 cos$\displaystyle {\frac{2\pi}{n}}$$\displaystyle \overrightarrow{OA_n}$.    

необходимы и достаточны для того, чтобы существовало аффинное преобразование, переводящее данный многоугольник в правильный, а точку O — в его центр.

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .