ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны окружность S, точка P, расположенная вне S,
и прямая l, проходящая через P и пересекающая окружность
в точках A и B. Точку пересечения касательных к окружности
в точках A и B обозначим через K.
Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Разрешается проделывать следующее преобразование (перестройку): взяв пару треугольников ABD и BCD с общей стороной, заменить их на треугольники ABC и ACD. Пусть P(n) – наименьшее число перестроек, за которое можно перевести каждое разбиение в любое. Докажите, что α, β и γ - углы треугольника ABC. Докажите, что
Пусть ABCDEF — описанный шестиугольник. Докажите, что его
диагонали AD, BE и CF пересекаются в одной точке (Брианшон).
|
Страница: << 1 2 [Всего задач: 10]
Даны окружность S, прямая l, точка M, лежащая
на S и не лежащая на l, и точка O, не лежащая на S.
Рассмотрим преобразование P прямой l, являющееся композицией
проектирования l на S из M, S на себя из O и S на l
из M, т. е. P(A) — пересечение прямых l и MC,
где C — отличная от B точка пересечения S с прямой OB,
а B — отличная от A точка пересечения S с прямой MA.
Докажите, что преобразование P проективно.
Даны окружность S, точка P, расположенная вне S,
и прямая l, проходящая через P и пересекающая окружность
в точках A и B. Точку пересечения касательных к окружности
в точках A и B обозначим через K.
Вневписанная окружность треугольника ABC касается стороны BC
в точке D, а продолжений сторон AB и AC —
в точках E и F. Пусть T — точка пересечения прямых BF
и CE. Докажите, что точки A, D и T лежат на одной прямой.
Пусть ABCDEF — описанный шестиугольник. Докажите, что его
диагонали AD, BE и CF пересекаются в одной точке (Брианшон).
Точки A, B, C и D лежат на окружности, SA и SD —
касательные к этой окружности, P и Q — точки
пересечения прямых AB и CD, AC и BD соответственно.
Докажите, что точки P, Q и S лежат на одной прямой.
Страница: << 1 2 [Всего задач: 10]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке