Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В треугольнике ABC высота AH равна медиане BM. Найдите угол MBC.

Вниз   Решение


а) Диагонали выпуклого четырехугольника ABCD пересекаются в точке P. Известны площади треугольников ABP, BCP, CDP. Найдите площадь треугольника ADP.
б) Выпуклый четырехугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел представляет собой точный квадрат.

ВверхВниз   Решение


Даны параллелограмм ABCD и некоторая точка M. Докажите, что  SACM = | SABM±SADM|.

ВверхВниз   Решение


Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60o (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в C.

ВверхВниз   Решение


Докажите, что при n ≠ 4 правильный n-угольник нельзя расположить так, чтобы его вершины оказались в узлах целочисленной решетки.

ВверхВниз   Решение


На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

ВверхВниз   Решение


Докажите, что при повороте окружность переходит в окружность.

ВверхВниз   Решение


На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.

ВверхВниз   Решение


На стороне AB четырехугольника ABCD взяты точки A1 и B1, а на стороне CD — точки C1 и D1, причем  AA1 = BB1 = pAB и  CC1 = DD1 = pCD, где p < 0, 5. Докажите, что  SA1B1C1D1/SABCD = 1 - 2p.

ВверхВниз   Решение


Через середину C произвольной хорды AB окружности проведены две хорды KL и MN (точки K и M лежат по одну сторону от AB). Отрезок KN пересекает AB в точке P. Отрезок LM пересекает AB в точке Q. Докажите, что  PC = QC.

ВверхВниз   Решение


На сторонах AB и CD выпуклого четырехугольника ABCD взяты точки E и F. Пусть K, L, M и N — середины отрезков DE, BF, CE и AF. Докажите, что четырехугольник KLMN выпуклый и его площадь не зависит от выбора точек E и F.

ВверхВниз   Решение


Найдите угол B треугольника ABC, если длина высоты CH равна половине длины стороны AB, а  $ \angle$BAC = 75o.

ВверхВниз   Решение


а) Можно ли замостить костями домино размером 1×2 шахматную доску размером 8×8, из которой вырезаны два противоположных угловых поля?
б) Докажите, что если из шахматной доски размером 8×8 вырезаны две произвольные клетки разного цвета, то оставшуюся часть доски всегда можно замостить костями домино размером 1×2.

ВверхВниз   Решение


Даны окружность S и две хорды AB и CD. Циркулем и линейкой постройте на окружности такую точку X, чтобы прямые AX и BX высекали на CD отрезок а) имеющий данную длину a; б) делящийся пополам в данной точке E хорды CD.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 58459

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6
Классы: 10,11

Даны окружность, прямая и точки A, A', B, B', C, C', M, лежащие на этой прямой. Согласно задачам 30.1 и 30.3 существует единственное проективное преобразование данной прямой на себя, отображающее точки A, B, C соответственно в A', B', C'. Обозначим это преобразование через P. Постройте при помощи одной линейки а) точку P(M); б) неподвижные точки отображения P (задача Штейнера).
Прислать комментарий     Решение


Задача 58460

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6
Классы: 10,11

Даны две прямые l1 и l2 и две точки A и B, не лежащие на этих прямых. Циркулем и линейкой постройте на прямой l1 такую точку X, чтобы прямые AX и BX высекали на прямой l2 отрезок, а) имеющий данную длину a; б) делящийся пополам в данной точке E прямой l2.
Прислать комментарий     Решение


Задача 58461

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11

Точки A и B лежат на прямых a и b соответственно, а точка P не лежит ни на одной из этих прямых. Циркулем и линейкой проведите через P прямую, пересекающую прямые a и b в точках X и Y соответственно таких, что длины отрезков AX и BY имеют а) данное отношение; б) данное произведение.
Прислать комментарий     Решение


Задача 58462

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11

Циркулем и линейкой проведите через данную точку прямую, на которой три данные прямые высекают равные отрезки.
Прислать комментарий     Решение


Задача 58463

Тема:   [ Применение проективных преобразований прямой в задачах на построение ]
Сложность: 6+
Классы: 10,11

Даны окружность S и две хорды AB и CD. Циркулем и линейкой постройте на окружности такую точку X, чтобы прямые AX и BX высекали на CD отрезок а) имеющий данную длину a; б) делящийся пополам в данной точке E хорды CD.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .