ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



Задача 60279  (#01.006)

Темы:   [ Индукция (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

Прислать комментарий     Решение

Задача 60280  (#01.007)

Темы:   [ Индукция (прочее) ]
[ Рекуррентные соотношения ]
[ Тождественные преобразования ]
Сложность: 4
Классы: 8,9,10

Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

Прислать комментарий     Решение

Задача 60281  (#01.008)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Арифметическая прогрессия ]
Сложность: 2
Классы: 7,8,9

Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.
Прислать комментарий     Решение


Задача 60282  (#01.009)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9

Докажите тождество: 12 + 22 +...+ n2 = $\displaystyle {\textstyle\frac{1}{6}}$n(n + 1)(2n + 1).

Прислать комментарий     Решение

Задача 60283  (#01.010)

Темы:   [ Индукция (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9,10

Докажите тождество: 12 + 32 +...+ (2n - 1)2 = $\displaystyle {\textstyle\frac{1}{3}}$n(2n - 1)(2n + 1).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .