ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что для всех натуральных n число, записываемое 3n единицами, делится на 3n.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



Задача 60294  (#01.021)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 9,10

Докажите, что для любого натурального n  62n+1 + 1  делится на 7.

Прислать комментарий     Решение

Задача 60295  (#01.022)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Докажите, что для любого натурального n число  32n+2 + 8n – 9  делится на 16.

Прислать комментарий     Решение

Задача 60296  (#01.023)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Докажите, что для любого натурального n  4n + 15n – 1 делится на 9.

Прислать комментарий     Решение

Задача 60297  (#01.024)

Темы:   [ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Докажите, что для любого натурального n  23n + 1  делится на 3n+1.

Прислать комментарий     Решение

Задача 60298  (#01.025)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Индукция (прочее) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что для всех натуральных n число, записываемое 3n единицами, делится на 3n.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .