|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Правильный $n$-угольник со стороной 1 вращается вокруг другого такого же $n$-угольника, как показано на рисунке. Последовательные положения одной из его вершин в моменты, когда $n$-угольники имеют общую сторону, образуют замкнутую ломаную $\kappa$. Докажите, что $\kappa$ ограничивает площадь, равную $6A - 2B$, где $A$, $B$ – площади правильных $n$-угольников с единичными стороной и радиусом описанной окружности соответственно. Из чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59]
Из чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое.
Найти корни уравнения
Докажите неравенство для натуральных n:
Докажите неравенство для натуральных n:
Докажите неравенство для натуральных n > 1:
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 59] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|