ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Среди своих старых рисунков Катя нашла несколько картинок с разноцветным зонтиком. Катя помнит, что рисовала один и тот же зонтик (вид сверху), только повёрнутый по-разному. К сожалению, от времени краска частично выцвела.

Помогите Кате восстановить, в каком порядке располагались цвета на зонтике, если идти от 1 (розового) по часовой стрелке.

Вниз   Решение


Игральный кубик симметричен, но устроен необычно: на двух гранях по два очка, а на остальных четырёх – по одному. Сергей бросил кубик несколько раз, и в результате сумма всех выпавших очков оказалась 3. Найдите вероятность того, что при каком-то броске выпала грань с 2 очками.

ВверхВниз   Решение


Автор: Шень А.Х.

Вадик написал название своего родного города и все его циклические сдвиги (перестановки по кругу), получив таблицу 1. Затем, упорядочив эти ''слова'' по алфавиту, он составил таблицу 2 и выписал её последний столбец: ВКСАМО.

Саша сделал то же самое с названием своего родного города и получил ''слово'' МТТЛАРАЕКИС. Что это за город, если его название начинается с буквы С?

ВверхВниз   Решение


На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



Задача 60380  (#02.046)

Тема:   [ Классическая комбинаторика (прочее) ]
Сложность: 3-
Классы: 8,9

Из двух математиков и десяти экономистов надо составить комиссию из восьми человек.
Сколькими способами можно составить комиссию, если в неё должен входить хотя бы один математик?

Прислать комментарий     Решение

Задача 60381  (#02.047)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 2
Классы: 7,8

На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Прислать комментарий     Решение

Задача 60382  (#02.048)

Темы:   [ Сочетания и размещения ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 8,9

На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

Прислать комментарий     Решение

Задача 60383  (#02.049)

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 3-
Классы: 8,9

На двух параллельных прямых a и b выбраны точки A1, A2, ..., Am и B1, B2, ..., Bn соответственно и проведены все отрезки вида AiBj
(1 ≤ im,  1 ≤ jn).  Сколько будет точек пересечения, если известно, что никакие три из этих отрезков в одной точке не пересекаются?

Прислать комментарий     Решение

Задача 60384  (#02.050)

 [Ключи от сейфа]
Темы:   [ Сочетания и размещения ]
[ Криптография ]
Сложность: 3+
Классы: 8,9

Международная комиссия состоит из девяти человек. Материалы комиссии хранятся в сейфе. Сколько замков должен иметь сейф, сколько ключей для них нужно изготовить и как их разделить между членами комиссии, чтобы доступ к сейфу был возможен тогда и только тогда, когда соберутся не менее шести членов комиссии?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .