Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

Три офиса A, B и C одной фирмы расположены в вершинах треугольника. В офисе A работают 10 человек, в офисе B - 20, а в офисе C - 30. Где нужно построить столовую, чтобы суммарное расстояние, проходимое всеми сотрудниками фирмы, было бы как можно меньше?

Вниз   Решение


Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?

ВверхВниз   Решение


На трех гранях куба провели диагонали так, что получился треугольник. Найти углы этого треугольника.

ВверхВниз   Решение


В обращении есть монеты достоинством в 1, 2, 5, 10, 20, 50 копеек и 1 рубль. Известно, что k монетами можно набрать m копеек.
Докажите, что m монетами можно набрать k рублей.

ВверхВниз   Решение


Игровое поле представляет собой горизонтальную полоску размером 1×100 клеток. В самой левой клетке стоит фишка. Двое по очереди двигают фишку вправо, причём за один ход разрешается сдвинуть фишку вправо на расстояние от 1 до 10 клеток. Проигрывает тот, кто не может сделать ход (то есть перед его ходом фишка находится в самой правой клетке). Кто выиграет при правильной игре?

ВверхВниз   Решение


В пассажирском поезде 17 вагонов.
Сколькими способами можно распределить по вагонам 17 проводников, если за каждым вагоном закрепляется один проводник?

ВверхВниз   Решение


Все натуральные числа, начиная с единицы, записаны в порядке возрастания 1234567891011121314…… . Какая цифра стоит на сотом месте, а какая на тысячном?

ВверхВниз   Решение


На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?

ВверхВниз   Решение


Обратите внимание, что значение  1!·1 + 2!·2 + 3!·3 + ... + n!·n  равно 1, 5, 23, 119 для  n = 1, 2, 3, 4  соответственно.
Установите общий закон и докажите его.

ВверхВниз   Решение


Можно ли нарисовать девятизвенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

ВверхВниз   Решение


Пусть ABCD – выпуклый четырехугольник. Докажите, что  AB + CD < AC + BD.

ВверхВниз   Решение


Можно ли в таблице 6*6 расставить числа 0,1,-1 так, чтобы все суммы по вертикалям, горизонталям и двум главным диагоналям были различны.

ВверхВниз   Решение


Сколькими способами, двигаясь по следующей таблице от буквы к букве,

            к            
          в   в          
        а   а   а        
      д   д   д   д      
    р   р   р   р   р    
  а   а   а   а   а   а  
т   т   т   т   т   т   т
можно прочитать слово "квадрат"?

ВверхВниз   Решение


Можно ли испечь такой торт, который может быть разделён одним прямолинейным разрезом на 4 части?

ВверхВниз   Решение


На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Вверх   Решение

Задачи

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 4556]      



Задача 60370

Тема:   [ Перестановки и подстановки (прочее) ]
Сложность: 2
Классы: 7,8,9

В пассажирском поезде 17 вагонов.
Сколькими способами можно распределить по вагонам 17 проводников, если за каждым вагоном закрепляется один проводник?

Прислать комментарий     Решение

Задача 60371

Темы:   [ Перестановки и подстановки (прочее) ]
[ Произведения и факториалы ]
Сложность: 2
Классы: 8,9

Количество перестановок множества из n элементов обозначается Pn. Докажите равенство  Pn = n!.

Прислать комментарий     Решение

Задача 60379

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 2
Классы: 7,8,9

Из класса, в котором учатся 28 человек, назначаются на дежурcтво в столовую 4 человека.
  а) Сколькими способами это можно сделать?
  б) Сколько существует способов набрать команду дежурных, в которую попадёт ученик этого класса Коля Васин?

Прислать комментарий     Решение

Задача 60381

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 2
Классы: 7,8

На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Прислать комментарий     Решение

Задача 60409

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Правило произведения ]
Сложность: 2
Классы: 8,9

Сколькими способами, двигаясь по следующей таблице от буквы к букве,

            к            
          в   в          
        а   а   а        
      д   д   д   д      
    р   р   р   р   р    
  а   а   а   а   а   а  
т   т   т   т   т   т   т
можно прочитать слово "квадрат"?

Прислать комментарий     Решение

Страница: << 41 42 43 44 45 46 47 >> [Всего задач: 4556]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .