ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) К любому конечному множеству точек плоскости, обладающему тем свойством, что любые три точки из этого множества являются вершинами невырожденного тупоугольного треугольника, всегда можно добавить ещё одну точку так, что это свойство сохранится. Докажите это. б) Справедливо ли аналогичное утверждение для бесконечного множества точек плоскости? ![]() ![]() Докажите, что числа Каталана удовлетворяют рекуррентному соотношению
Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0. ![]() ![]() |
Страница: << 16 17 18 19 20 21 22 [Всего задач: 110]
Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?
Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?
Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?
а) Пусть {a1, a2,..., an} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов б) Выведите отсюда равенства:
Докажите, что числа Каталана удовлетворяют рекуррентному соотношению
Cn = C0Cn–1 + C1Cn–2 + ... + Cn–1C0.
Страница: << 16 17 18 19 20 21 22 [Всего задач: 110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |