ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть n – натуральное число, не кратное 17. Докажите, что либо  n8 + 1,  либо  n8 – 1  делится на 17.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 [Всего задач: 99]      



Задача 30682  (#096)

Темы:   [ Малая теорема Ферма ]
[ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 9,10

Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого  ab ≡ 1 (mod p).

Прислать комментарий     Решение

Задача 60749  (#098)

Темы:   [ Малая теорема Ферма ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Пусть n – натуральное число, не кратное 17. Докажите, что либо  n8 + 1,  либо  n8 – 1  делится на 17.

Прислать комментарий     Решение

Задача 30685  (#099)

Тема:   [ Малая теорема Ферма ]
Сложность: 4+
Классы: 9,10

а) Пусть p – простое число, отличное от 3. Докажите, что число 1...1 (p единиц) не делится на p.

б) Пусть  p > 5  – простое число. Докажите, что число 1...1  (p – 1  единица) делится на p.

Прислать комментарий     Решение

Задача 60750  (#100)

Темы:   [ Простые числа и их свойства ]
[ Малая теорема Ферма ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 9,10,11

Докажите, что при любом простом  p     делится на p.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 [Всего задач: 99]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .