ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Коля Васин задумал число: 1, 2 или 3. Вы
задаете ему только один вопрос, на который он может ответить ``
да'', ``нет'' или ``не знаю''. Сможете ли вы
угадать число, задав всего лишь один вопрос?
Пусть a и b – два положительных числа, причём a < b. Построим по этим числам две последовательности {an} и {bn} по правилам: a0 = a, b0 = b, an+1 =
Докажите, что обе эти последовательности имеют один и тот же предел. Этот предел называется арифметико-геометрическим средним чисел a, b и обозначается μ(a, b).
Исследуйте последовательности на сходимость:
Решить в простых числах уравнение pqr = 7(p + q + r). Докажите, что на рёбрах связного графа можно так расставить стрелки, чтобы из некоторой вершины можно было добраться по стрелкам до любой другой.
Марсианские
амебы II. При помощи ним-сумм (смотри задачу 5.76) можно исследовать самые разные
игры и процессы. Например, можно получить еще одно решение
задачи 4.20.
f (A)
Какие рассуждения остается провести, чтобы решить задачу про амеб?
В некоторой стране есть столица и еще 100 городов. Некоторые города (в том числе и столица) соединены дорогами с односторонним движением. Из каждого нестоличного города выходит 20 дорог, и в каждый такой город входит 21 дорога. Докажите, что в столицу нельзя проехать ни из одного города.
Имеется несколько кучек камней.
Двое по очереди берут из них камни. За один ход разрешается взять
из одной кучки от 1 до 5 камней. Определите выигрышную
стратегию в этой игре, если тот, кто взял последний камень а)
выигрывает; б) проыигрывает.
Докажите, что связный граф с 2n нечётными вершинами можно нарисовать, оторвав карандаш от бумаги ровно n –1 раз и не проводя никакое ребро дважды.
Докажите, что при
x≠πn (n– целое) sin x и cos x рациональны
тогда и только тогда, когда число
tg Избавьтесь от иррациональности в знаменателе:
Что останется от прямоугольника?
Золотой прямоугольник — это такой прямоугольник, стороны a и
b которого находятся в пропорции золотого сечения,
то есть удовлетворяют равенству
a : b = b : (a - b). Представим, что такой прямоугольник вырезан из
бумаги и лежит на столе, обращенный к нам своей более длинной
стороной. Отсечем по левую сторону прямоугольника наибольший
квадрат, который можно из него вырезать; остаток будет снова
золотым прямоугольником. Далее становимся по левую сторону стола
так, чтобы снова иметь перед собой более длинную сторону и
поступаем с новым прямоугольником так же, как и с предыдущим.
Таким образом обходим стол вокруг по направлению хода часовой
стрелки и по очереди отсекаем квадраты. Каждая точка
прямоугольника за исключением одной, будет раньше или позже
отсечена. Определите положение этой исключительной точки.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]
Последовательность чисел {an} задана условиями
a1 = 1, an + 1 = an + Верно ли, что эта
последовательность ограничена?
Числа a1, a2, ..., ak таковы, что равенство
P(
по модулю меньше 1.
Исследуйте последовательности на сходимость:
Что останется от прямоугольника?
Золотой прямоугольник — это такой прямоугольник, стороны a и
b которого находятся в пропорции золотого сечения,
то есть удовлетворяют равенству
a : b = b : (a - b). Представим, что такой прямоугольник вырезан из
бумаги и лежит на столе, обращенный к нам своей более длинной
стороной. Отсечем по левую сторону прямоугольника наибольший
квадрат, который можно из него вырезать; остаток будет снова
золотым прямоугольником. Далее становимся по левую сторону стола
так, чтобы снова иметь перед собой более длинную сторону и
поступаем с новым прямоугольником так же, как и с предыдущим.
Таким образом обходим стол вокруг по направлению хода часовой
стрелки и по очереди отсекаем квадраты. Каждая точка
прямоугольника за исключением одной, будет раньше или позже
отсечена. Определите положение этой исключительной точки.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке