Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Пусть p и q — отличные от нуля действительные числа и p2 - 4q > 0. Докажите, что следующие последовательности сходятся:
а) y0 = 0,        yn + 1 = $ {\dfrac{q}{p-y_n}}$    (n $ \geqslant$ 0);
б) z0 = 0,        zn + 1 = p - $ {\dfrac{q}{z_n}}$    (n $ \geqslant$ 0).
Установите связь между предельными значениями этих последовательностей y*, z* и корнями уравнения x2 - px + q = 0.

Вниз   Решение


Докажите, что для чисел {xn} из задачи 61297 можно в явном виде указать разложения в цепные дроби:  xn+1 = [1;].
Оцените разность  |xn|.

ВверхВниз   Решение


Проанализируйте при помощи ним-сумм игру ``Йога'' из задачи 4.21.

ВверхВниз   Решение


Коля Васин задумал число от 1 до 200. За какое наименьшее число вопросов вы сможете его отгадать, если он отвечает на каждый вопрос
а) ``да'' или ``нет'';
б) ``да'', ``нет'' или ``не знаю''?

ВверхВниз   Решение


Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 61311  (#09.060)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 10,11

Алгоритм приближенного вычисления $ \sqrt[3]{a}$. Последовательность {an} определяется условиями:

a0 = a > 0,        an + 1 = $\displaystyle {\textstyle\frac{1}{3}}$$\displaystyle \left(\vphantom{2a_{n}+\frac{a}{a_{n}^2}}\right.$2an + $\displaystyle {\frac{a}{a_{n}^2}}$$\displaystyle \left.\vphantom{2a_{n}+\frac{a}{a_{n}^2}}\right)$        (n $\displaystyle \geqslant$ 0).

Докажите, что $ \lim\limits_{n\to\infty}^{}$an = $ \sqrt[3]{a}$.

Прислать комментарий     Решение

Задача 61312  (#09.061)

Темы:   [ Кубические многочлены ]
[ Уравнения высших степеней (прочее) ]
[ Итерации ]
Сложность: 4
Классы: 10,11

Укажите способ приближенного нахождения положительного корня уравнения  x³ – x – 1 = 0.

Прислать комментарий     Решение

Задача 61313  (#09.062)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 10,11

Последовательность чисел {an} задана условиями

a1 = 1,        an + 1 = $\displaystyle {\dfrac{3a_n}{4}}$ + $\displaystyle {\dfrac{1}{a_n}}$    (n $\displaystyle \geqslant$ 1).

Докажите, что
а) последовательность {an} ограничена;
б) | a1000 - 2| < $ \left(\vphantom{\dfrac{3}{4}}\right.$$ {\dfrac{3}{4}}$$ \left.\vphantom{\dfrac{3}{4}}\right)^{1000}_{}$.

Прислать комментарий     Решение

Задача 61314  (#09.063)

Темы:   [ Предел последовательности, сходимость ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4-
Классы: 10,11

Найдите предел последовательности, которая задана условиями

a1 = 2,        an + 1 = $\displaystyle {\dfrac{a_n}{2}}$ + $\displaystyle {\dfrac{a_n^2}{8}}$    (n $\displaystyle \geqslant$ 1).


Прислать комментарий     Решение

Задача 61315  (#09.064)

Темы:   [ Итерации ]
[ Рекуррентные соотношения (прочее) ]
[ Теоремы о среднем значении ]
Сложность: 4
Классы: 10,11

Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .