ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Тройки чисел (xn, yn, zn) (n 1) строятся по правилу: x1 = 2, y1 = 4, z1 = 6/7,
xn + 1 = , yn + 1 = , zn + 1 = , (n 1).
а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен. б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0? Решение |
Страница: << 3 4 5 6 7 8 9 [Всего задач: 44]
= . . ...
x0 = 1, xn + 1 = axn (n 0).
Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
a1 = 1, an + 1 = an + (n 0).
Докажите, что
а) эта последовательность неограничена; б) a9000 > 30; в) найдите предел .
xn + 1 = , yn + 1 = , zn + 1 = , (n 1).
а) Докажите, что указанный процесс построения троек может быть неограниченно продолжен. б) Может ли на некотором шаге получится тройка чисел (xn, yn, zn), для которой xn + yn + zn = 0?
Страница: << 3 4 5 6 7 8 9 [Всего задач: 44] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|