Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки.

Вниз   Решение


В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.

ВверхВниз   Решение


Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:

a2(a1 - a2 + a3) < 0
a3(a2 - a3 + a4) < 0
.........    
a11(a10 - a11 + a12) < 0

Доказать, что среди этих чисел найдётся по крайней мере 3 положительных и 3 отрицательных.

ВверхВниз   Решение


Дан многочлен P(x) с целыми коэффициентами, причём для каждого натурального x выполняется неравенство  P(x) > x.  Определим последовательность {bn} следующим образом:  b1 = 1,  bk+1 = P(bk)  для  k ≥ 1. Известно, что для любого натурального d найдется член последовательности {bn}, делящийся на d. Докажите, что  P(x) = x + 1.

ВверхВниз   Решение


Построить окружность, проходящую через две данные точки и отсекающую от данной окружности хорду данной длины.

ВверхВниз   Решение


Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной 1. Столбик – это три кубика, стоящих рядом вдоль одного направления: ширины, длины или высоты. Может ли быть так, что в каждом столбике
  а) нечётное количество белых кубиков?
  б) нечётное количество чёрных кубиков?

ВверхВниз   Решение


Построить треугольник по основанию, высоте и разности углов при основании.

ВверхВниз   Решение


Докажите, что  6r $ \leq$ a + b.

ВверхВниз   Решение


Докажите, что  2bc cos$ \alpha$/(b + c) < b + c - a < 2bc/a.

ВверхВниз   Решение


Докажите, что

la2lb2 + lb2lc2 + la2lc2$\displaystyle \le$rp2(4R + r).


ВверхВниз   Решение


На плоскости даны окружность S и точка P. Прямая, проведенная через точку P, пересекает окружность в точках A и B. Докажите, что произведение  PA . PB не зависит от выбора прямой.



ВверхВниз   Решение


Внутри выпуклого многоугольника расположены две точки.
Докажите, что найдётся четырёхугольник с вершинами в вершинах этого многоугольника, содержащий эти две точки.

ВверхВниз   Решение


Выведите из неравенства задачи 61401

  а) неравенство Коши-Буняковского:  

  б) неравенство между средним арифметическим и средним квадратичным:   ;

  в) неравенство между средним арифметическим и средним гармоническим:   .
  Значения переменных считаются положительными.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 61400  (#10.049)

 [Сумма минимумов и минимум суммы]
Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 2+
Классы: 8,9,10,11

Предположим, что имеется набор функций  f1(x), ...,  fn(x), определённых на отрезке  [a, b].  Докажите неравенство:

Прислать комментарий     Решение

Задача 61401  (#10.050)

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Докажите неравенство:   + ... + .
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61402  (#10.051)

Тема:   [ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Выведите из неравенства задачи 61401

  а) неравенство Коши-Буняковского:  

  б) неравенство между средним арифметическим и средним квадратичным:   ;

  в) неравенство между средним арифметическим и средним гармоническим:   .
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61403  (#10.052)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Производная и экстремумы ]
Сложность: 4-
Классы: 10,11

Докажите неравенство:  
Значения переменных считаются положительными.

Прислать комментарий     Решение

Задача 61404  (#10.053)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
[ Индукция (прочее) ]
Сложность: 4-
Классы: 10,11

Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .