|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать). Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0? Докажите, что если α < 0 < β, то
Sα(x) ≤ S0(x) ≤ Sβ(x), причём |
Страница: << 1 2 [Всего задач: 10]
Пусть p и q – положительные числа, причём
1/p + 1/q = 1. Докажите, что
Докажите, что выполняются классические неравенства между
средними степенными: S–1(x) ≤ S0(x) ≤ S1(x) ≤ S2(x).
Докажите, что если α < β и αβ ≠ 0, то Sα(x) ≤ Sβ(x).
Докажите, что если α < 0 < β, то
Sα(x) ≤ S0(x) ≤ Sβ(x), причём
Докажите, что если α < β, то Sα(x) ≤ Sβ(x), причём равенство возможно только когда x1 = x2 = ... = xn.
Страница: << 1 2 [Всего задач: 10] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|